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Abstract

Intrinsic symmetry detection, phrased as finding intrinsic self-isometries, courts much attention in recent years. However, extracting
dense global symmetry from the shape undergoing moderate non-isometric deformations is still a challenge to the state-of-the-art
methods. To tackle this problem, we develop an automatic and robust global intrinsic symmetry detector based on functional
maps. The main challenges of applying functional maps lie in how to amend the previous numerical solution scheme and construct
reliable and enough constraints. We address the first challenge by formulating the symmetry detection problem as an objective
function with descriptor, regional and orthogonality constraints and solving it directly. Compared with refining the functional map
by a post-processing, our approach does not break existing constraints and generates more confident results without sacrificing
efficiency. To conquer the second challenge, we extract a sparse and stable symmetry-invariant point set from shape extremities
and establish symmetry electors based on the transformation, which is constrained by the symmetric point pairs from the set. These
electors further cast votes on candidate point pairs to extract more symmetric point pairs. The final functional map is generated
with regional constraints constructed from the above point pairs. Experimental results on TOSCA and SCAPE Benchmarks show
that our method is superior to the state-of-the-art methods.

Keywords: global intrinsic symmetry, functional map, moderate non-isometric deformation

1. Introduction

Symmetry is an universal phenomenon in nature which pro-
vides global information about the structure of objects. Numer-
ous geometry processing tasks, such as shape matching [[1], seg-
mentation [2], geometry completion [3] and meshing [4], bene-
fit from symmetry information. Hence a great deal of work [J5]
devotes to extract symmetries from geometric data, e.g., point
clouds data and polygon meshes.

Most of the previous work concentrates on extrinsic sym-
metries [0, [7]. Recently, intrinsic symmetry detection, phrased

] Al B . - ) Figure 1: The results of our method for nearly self-isometric shapes (centaur,
as finding intrinsic self-isometries, has received more atten- michael, victoria and gorilla).

tion, since intrinsic symmetric objects or phenomenons are
more common in real world, such as a human in different pos-
es. However, it is infeasible to search the space of non-rigid
transformations directly in classical point-to-point representa-

s  isometry. The symmetry-invariant set, used to generate candi-
24 date Mobius transformations, consists of some local extrema

tion. S,O many methods lim%t the §earch Space to a set of ff?a' s of the Average Geodesic Distance function (AGD) [[11]. The
ture points, and adopt combinatorial algorithms to prune point .. may be not perfectly symmetric and leads to failure re-

pairs without pres'erving local georpetric similarity and distanc'e 27 sults. Ovsjanikov et al. [[12] extract intrinsic symmetries us-
s.tructure 3], ‘.Vhlch are computatlonally expensive and sensi- ing functional maps [13]]. But they need at least one reference
tive to geodesic noises. Kim et al. [J] take advantage of the . (p.he with a known symmetry to estimate the quotient space
fgct that 1nt.r1n510 self—1som.etr1es are contained in a low dimen- - 44 consistent decomposition to obtain the final dense intrin-
sional Mobius transformation space [10] to select the best self- . symmetries. The decomposition divides the shape into fun-
22 damental domains, e.g., the right part and the left part of the

*Corresponding author. E-mail: wangh@stdu.edu.cn (H. Wang). Tele- = shape in,the Case,Of reflectional Symmet?y' Furthermore’ Sh?lpt:S
phone: 86-15076171760. s undergoing considerable degree of non-isometric deformations,
**Corresponding author. E-mail: jjcao@dlut.edu.cn (J. Cao). s such as humanoid models with connections between torso and

Preprint submitted to Computer & Graphics December 12, 2014



36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

a. Initial Linear Constraints

b. Selection of Electors

c. Electors Voting d. Converted to Dense Self-isometry

Figure 2: The pipeline of our method.

other parts, also challenge the existing methods. 69

We observe that most existing methods detect intrinsic sym- "
metry over a sparse set of feature points, then propagate the
sparse correspondence to the entire shape using geodesic dis- "
tance. The performance is degenerated since the propagation "
only considers metric. The functional map framework presents "
a compact representation of correspondences between shapes, *
and provides an efficient way to convert functional maps in- "
to dense point-to-point correspondences [13]]. This motivates
us to present an automatic and robust method for global in- "
trinsic symmetry detection leveraging the functional map rep- *
resentation (Fig. [T). Intrinsic symmetries are non-trivial self- %
isometries represented by orthonormal functional map matrix- *
es. Extending the functional map to detect global intrinsic sym- *
metry directly suffers from the absence of constraints indicat- *
ing the underlying non-trivial self-isometry. Existing descrip- *
tors, such as Heat Kernel Signature (HKS) [14] and Wave Ker- .
nel Signature (WKS) [15]], provide no valuable cues for distin- *
guishing identity transformation with other symmetry transfor- *
mations, since they remain invariant in these transformations. *
Point or segment correspondences contain useful information *
for distinguishing the above transformations, however the es- *
tablishment of reliable and enough symmetric point or segment *"
pairs itself is a challenge problem. The key idea of our method *
is to construct reliable and sufficient regional constraints from _
symmetric point pairs. The most prominent and stable feature
pairs tend to lie on the extremities of the model. We design an
initialization procedure to extract sparse and reliable symmet-
ric point pairs from the extremities, and a voting procedure to |
extract more symmetric point pairs.

7

98

In the initialization procedure, initial symmetric point pairs s
are chosen from a symmetry-invariant set (Fig. |Z| (a)), whichioo
is extracted from shape extremities and whose stability andio

2

sparseness make the procedure reliable and efficient. Then
we compute an initial functional map satisfying regional con-
straints, constructed from the initial point pairs. We specify
the parts containing the initial symmetric pairs as the reliable
parts of the initial functional map. More symmetric point pairs
over the reliable parts are selected as symmetry electors (Fig. 2]
(b)). In the following procedure, a voting scheme is proposed
to extract more symmetric point pairs outside the reliable parts
(Fig. |Z| (c)). The final functional map is generated with the re-
gional constraints constructed from all of the point pairs, and
converted to a point-to-point mapping (Fig. [2](d)).

When solving for the functional maps, we formulate the
problem as an optimization problem with descriptor, regional
and orthogonality constraints simultaneously. Compared with
refining the functional map by a post-processing [12, [13} [16],
our method does not break other constraints and generates more
confident results without sacrificing efficiency. The functional
representation, efficient optimization method and effective re-
gional constraints together make our method a faster, automatic
and robust implementation for global intrinsic symmetry detec-
tion. We demonstrate the effectiveness of our optimization with
orthogonality constraints and the voting scheme experimental-
ly (Section[5.1and Section[5.2). The pipeline of our method is
given in Fig. 2] The main contributions are as follows:

1. We present a robust intrinsic symmetry detection method
based on functional maps. By formulating the problem as
an objective function with descriptor, regional and orthog-
onality constraints and solving it directly, more faithful re-
sults are generated without compromising efficiency.

2. A reliable symmetry-invariant point set is generated by
moving a very sparse set of samples towards the extremi-
ties of shapes, making the establishment of the initial sym-
metric point pairs feasible.



102

103

105

106

107

108

109

110

11

112

13

114

115

116

17

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

3. A voting scheme is proposed to establish more symmetric
point pairs, which provides constraints outside the reliable
parts.

2. Related work

The vast majority of existing work has been on extrinsic sym-
metry detection [6} [T9]]. Recently, intrinsic symmetry
detection has attracted more attention [8] [0} [12] 20| 211, 22]. As
intrinsic symmetry is a special case of correspondences, most
methods work for shape correspondences as well as intrinsic
symmetries. Some previous work aims to establish point pairs
from feature points [8] 20, 23| 24, 25| 26, [28], which has
unknown complexity associated with the number of the fea-
ture points. For example, Au et al. [28] prune bad correspon-
dences over skeletal feature nodes. Zhang et al. [27] perform
the pruning procedure over prominent shape extremities, which
are local extrema of AGD. The local extrema of AGD are un-
stable under deformations and some local extrema may be not
symmetry-invariant points and do not have symmetric points
(the bottom row of Fig. E[) Moreover, the number and the lo-
cation of the local extrema are related to a smoothing parame-
ter, with which AGD is smoothed. Hence, in the pruning step,
we establish initial symmetric pairs over a sparse and stable
symmetry-invariant set (the top row of Fig.[3), which is extract-
ed from shape extremities. Similar to [28], our pruning-based
initialization step is followed by a voting procedure. In the vot-
ing step, Au et al. [28]] establish electors and candidates over the
same set of feature points, and output a sparse correspondence.
However, we construct electors and candidates in different part-s;
s of shapes. Because more electors and candidates are needed:ss
to provide enough regional constraints and solve for a denseis
intrinsic symmetry via functional maps. 160

Alternative approaches [8] 20}, 21]] aim to embed a shape into,s
a new space in which intrinsic symmetry detection is reduceds,
to an extrinsic one. For example, Raviv et al. [8] embed the ob-,
ject into an Euclidean space by generalized multi-dimensional,
scaling. The original geodesic distances are preserved in the;es
form of corresponding Euclidean distances. They minimize dis-
tance distortion directly in the new space. Ovsjanikov et al. [21]]
define a signature space by the eigenfunctions of the Laplace-1es
Beltrami operator, in which each point is represented as a se-
quence of signs of the restricted Global Point Signature [29]. e

Some recent work has attempted to represent intrinsic sym-ies
metries as global transformations with a small number of pa-1e
rameters, which is similar to extrinsic symmetry detection [9]].17
Lipman et al. [10] observe that isometry is a subset of Mobius
transformations which has only 6 degrees of freedom for genus
zero surfaces, and develop a Mobius Voting scheme to find
correspondences of shapes. Kim et al. [9] extend it to detecti
global intrinsic symmetry since intrinsic symmetries are self-17s
isometries of shapes. Kim et al. [30] blend a large set of can-is
didate conformal maps to form a smooth map, which resultss
in a large blending matrix and is computationally expensive.is
Liu et al. detect intrinsic reflective symmetry axis curvesi
based on blended intrinsic maps [30]. All of the above meth-17s
ods based on conformal geometry assume the input shapes areizs

3

Figure 3: The symmetry-invariant point sets V (top) and the local extrema of
AGD (bottom) on various mesh models. Some local extrema of AGD may be
not stationary points and do not have symmetric points (marked by red circle).

genus zero surfaces. The quality of the meshes affects their per-
formance, since they use a mid-edge uniformization technique
to map genus zero surfaces onto the extended complex plane.

Using the novel functional representation [13], Ovsjanikov
et al. [12] detect intrinsic symmetry via an appropriate quotient
space of the functional space. However, establishing the quo-
tient space requires at least one reference shape with a known
symmetry and the conversion to dense intrinsic symmetries is
not straightforward.

3. Optimization of global intrinsic symmetry

We adopt functional maps introduced by Ovsjanikov et
al. [13] to detect global intrinsic symmetries. Before introduc-
ing our objective function in Section [3.2] a brief overview of
functional maps is given in Section[3.1}

3.1. Functional maps

Given two compact smooth Riemannian manifolds M, N
and a bijective mapping between them 7 : M — N, a linear
transformation between two function spaces is induced T :
FMR) - FN,R), Te(f) = fo T, f € F(M,R), where
F(M,R), F(N,R) denote the spaces of real functions on M
and N respectively.

Given two groups of basis functions, {¢lM} of F(M,R) and
{¢§V } of F(N,R), the transformation Tr can be fully encoded
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by a real matrix C defined by 220

Tr@)) = gl (Do

J 223

Conversely, the mapping 7 can be recovered once the matrix C***

is obtained, according to Remark 4.1 in [13]]. In this paper, we
use the eigenfunctions of the Laplace-Beltrami operator on the
mesh as the basis functions. The cotangent weight scheme [32]]
without area normalization is employed for the discretization of**
the Laplace-Beltrami operator, which is less sensitive to volume?®
distortion and results in more compact functional maps. For any?”
real function f on M represented as f = (”ziqﬁlM and g = Tr(f)*®
l

229
on N represented as g = >, b j(b;.v , we have the equation: 230
i

g= Y bt} =Tr(f)= ) aTr(@!
j i
= Z a; Z cidy = Z Z aicjig),
i j J i

which can be rewritten as b = Ca if a = (3;) and b = (b /)23
denote the vectors of coefficients of f and g, respectively. Inz
this way, many constraints of the mapping 7" become linear in2s
the functional representation, such as descriptor preservation,2s
point or segment correspondences and operator commutativity,27
and cast enough constraints b; = Ca; on the unknown matrix C.2%
According to Theorem 5.1 in [13]], when the underlying map2s
T is isometric, T commutes with the Laplace-Beltrami operatorz+
and the corresponding functional matrix C must be orthonor-2+
mal. Hence the orthogonality and operator commutativity pro-2+

vide additional constraints in this case. 243
244

@)

232

3.2. Optimization with orthogonality constraints s

246
It is well known that global intrinsic symmetry is a self-,,,

isometric transformation of a shape. It induces an orthonormal,,,
functional matrix C commutating with the Laplace-Beltrami
operator. As mentioned in Section [3.1] the matrix C can be
recovered by casting the following three types of constraints:

CA =B, ©)
CR = RC, 4)
c'c=1, (3)

where A = (a;), B = (b;), and R is the functional matrix induced
by the Laplace-Beltrami operator.

In order to find the best transformation in the functional rep-
resentation satisfying the constraints in Eq. and [5] Ovs-
janikov et al. [12, [13]] and Pokrass et al. [16] estimate an ini-
tial functional map by solving a linear system constructed via
Eq.[3land[4] in the least squares sense. A post-processing is em-
ployed to refine the initial functional map by orthogonalizing it
iteratively, in which point-to-point mappings over samples must
be established iteratively. The post-processing may also break
some existing constraints when refining the initial transforma-
tion. Thus, a good initial functional map is important and the
computational cost relies on the number of the samples.

In this paper, we employ the optimization method with or-
thogonality constraints [33]] to compute a functional map sat-
isfying all of the constraints directly. The algorithm has lower
flops and generates no worse solution than the state-of-the-art
methods. Our problem is formulated as follows:

minc||CA — Bl% + A||CR — RC||> s.t. CTC = I, (6)
where [ is the identity matrix. We choose the Frobenius norm
to ensure the differentiability of the objective function and a
non-negative parameter A to control the influence of operator
commutativity. A small 1 is used when a shape undergoes some

degree of non-isometric deformations. We use A = 0.1 for our
experiments.

4. Algorithm

Given a nearly self-isometric triangular mesh M, our algo-
rithm takes three stages to establish the underlying dense intrin-
sic symmetry 7' : M — M. First, we extract a sparse and stable
symmetry-invariant point set V (see the first row of Fig.[3) and
establish reliable initial symmetric point pairs Pf from it. The
initial regional constraints are constructed from Pf. Combin-
ing the initial regional constraints with two types of descriptor
preservation constraints, denoted as CA; = By, an initial trans-
formation C; is computed via Eq.[6] Symmetric point pairs over
reliable parts of C; are established and deemed to be symmetry
elector groups Py. Then, the electors from Py cast votes on
candidate point pairs outside the reliable parts to establish more
symmetric point pairs Pg. The final transformation C; is solved
using Eq. E]With the constraints CA; = By and CA, = B, con-
structed from Pg. Finally, C; is converted to T via a variant of
the method described in [13]]. The pseudocode of our approach
is given in Algorithml(I]

Algorithm 1: Properly-constrained Orthonormal Function-
al Maps for Intrinsic Symmetries

Input: A nearly self-isometric shape M
Qutput: A point-to-point self-mapping T
1: /*The selection of symmetry electors*/
1.1: V « ExtractSet(M, AGD);
1.2: SDf « EstablishPairs(V,HKS,WKS,AGD);
1.3: CA; = By « BuildConstraints(HKS,WKS,
P
1.4: C; < OptimizeMap(A1, By, R);
1.5: Py « SelectElectors(C, Pf).
2: /*The voting scheme for more symmetric point pairs*/
2.1: Pg « ElectorsVoting(Py, WKS);
22: CAy = By « BuildConstraints(SDg);
2.3: C, « OptimizeMap(A1, B1,A3, B2, R).
3: /*The conversion to the dense self-isometry*/
3.1: T « ConvertMap(C»).
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Figure 4: The symmetry-invariant point set V (the right column) extracted from”"
nine samples (the left column) is shown from two viewpoints (the top row and®’
the bottom row). In each iteration, every sample (the black point) is movedzss
to the maxima (the red point) of AGD within a local region (the cyan region),qq

around it.
290

291

4.1. The selection of symmetry electors 202
293

4.1.1. The symmetry-invariant point set 294

A point set V on a self-isometric shape is a symmetry-**

invariant set [9] if Vv € V, T(v) € V for all symmetries T. v**®
is a stationary point if 7(v) = v; (v, V") is a symmetric point pair®’
if T(v) = v'. Motivated by the observation that the extremities
of the self isometric shape are stable and compose a symmetry->*
invariant set, we devise a sampling algorithm to extract the ex-**
tremities based on AGD, of which a larger value indicates the®
point is closer to the extremities. sz

Starting from the maxima of AGD, we perform the farthest
point sampling algorithm and obtain nine samples. These sam-*
ples compose a sampling set V (the left column of Fig. ), the*®
number of which should be larger than the number of the ex-*
tremities. The set V is not necessary to be on the extremities™
and symmetry-invariant. For each v; € V, we move it towards®®
to the extremities iteratively. In each iteration, v; is moved to
the maxima of AGD within a local region around it (the second®”
and third columns of Fig.[d), the radius of which is 0.2 times the®"
maximum geodesic distance. The movement is stopped until v;*
is stable or there is a sample v; € V with the AGD value not™”
smaller than the one of v;. In the latter case, v; is pruned from®"
(V. 315

316

298

303

4

6

7

309

2

317
4.1.2. The initial symmetric point pairs 318

We introduce two distortion measures of a mapping over the
symmetry-invariant set V. Given a mapping 7 : V — V, wess
measure its deviation from isometry by the maximum distortionszo
diso(7T) [34] and average distortion D;,(7) [35] defined as: a2

5

diso(T) = MAX(y; v )eTMAX (v v)eT’ diso(vi, ViiVss Vi), @)
1 1 ~
Diso(T) = ﬁ Z ﬁ Z diso(vi’ Vi Vs, Vr)s (8)
ivj)eT (vsv)ET”

where 77 = T — (v, v}), c?;so(vi, Vj; Vs, vy) is the non-isometric
distortion between point pairs (v;,v;) and (v, v;) defined as:

®

where d,(:,-) is the geodesic metric and is normalized by the
maximum geodesic distance over the mesh. A mapping 7 is an
ambiguous correspondence if the maximum distortion d;s,(7)
and average distortion Dj,,(7") are zeros (or approximate to ze-
ros), such as the identity mapping 77 in Fig. [5|and the flipped
mappings 7;,i = 2,3,4, in Fig. 5] Once the ambiguous map-
pings are identified, the symmetry orbit of a point can be ex-
tracted directly. An efficient search algorithm is proposed to
find the ambiguous mappings over the symmetry-invariant set
V, whose stability and sparsity ensure the reliability and feasi-
bility of our search algorithm.

The search algorithm is summarized in the following step-
s. First, we generate all of the mappings {7} among V as the
search space. Second, according to the local geometric simi-
larity and global distance structure, we prune bad mappings to
obtain the ambiguous mappings and the initial symmetric point
pairs 5 (Fig.[2|(a)).

A mapping in the search space could be identified as a bad
mapping from some perspectives. In our experiment, a mapping
is bad if its differences of local descriptors AGD, HKS and WK-
S are all larger than the corresponding thresholds € gp, €nks
and eygs. We do not prune a mapping only relying on one type
of descriptors. We also classify a mapping as a bad mapping if
its djso(77) or Dis(7") are larger than prescribed thresholds €4,
and ep,, .

The above thresholds are determined automatically. Taking
the computation of ep,, as an example (the top row in Fig. [6),
we compute D;s,(77) for all mappings {77} in the search space
and sort the values in ascending order. In this way, we get a
parameter curve of D;,,(7") and compute its gradient curve. We
select the value of D;y,(7") corresponding to the first maximum
value of the gradient curve (the red point in Fig. @ (b)) as ep,, -
The effectivity of the strategy is attributed to the fact that the
distortions of the ambiguous mappings are zeros (or approxi-
mate to zeros), which results in a jump between the ambiguous
mappings (the black points in Fig.[6](a)) and the rest mappings.
We use the smoothing method in [36] to approximate the promi-
nent structure of the curves. The thresholds €x6p, €yks, €Ewks
and ¢;,, are determined in the same way.

diso(Vis Vi3 Vi, Vi) = |dg(vi, vi) — dg(vj, v,

4.1.3. The initial transformation
For each (s;, 57) € P, we pick out the geodesic disks cen-
tering at s; and s/, respectively. The average values of Shape
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Figure 6: Take the horse in Fig. Elas an example. (a) The smoothed parameter curves of Djs,(7") (top) and differences of AGD (bottom) about mappings; (b) The
smoothed gradient curves of the smoothed parameter curves. The black points in (a) are the average distortion and differences of AGD of the ambiguous mappings

in Fig.EI The red points in (b) are the first maximum values of the gradient curves.

Diameter Function (SDF) [37]] over the geodesic disks are con-sse
trolled to be less than egpr, where SDF is normalized by its

maximum value. The threshold value €gpF is computed auto-

matically as follows: we segment the model into four clusters

according to SDF via k-means. The cluster with the largest SDF37
value is deemed to be the "body” of the model. We choose thes
minimal SDF value within this cluster as espr. The geodesicss
disks are divided evenly to obtain geodesic strip pairs as the
initial regional constraints. Finally, we project the indicators+
functions of the geodesic strip pairs onto the orthonormal ba-3
sis {q){"[(x)}l’.‘=1 to obtain linear constraints. Combining the linears+
constraints with HKS, WKS preservation constraints, we obtain3+
the initial linear constraints CA; = B;. The initial transforma-3
tion C; is solved through Eq. [flusing A = A;, B = B;. These

347

6

geodesic disks are deemed to be the reliable parts of C;.

Ovsjanikov et al. [13] convert the functional map to a point-
to-point mapping through searching the image of the delta func-
tion centered at each point in all of the delta functions cen-
tered at points of M. Different with [13]], we limit the search
space of points in the reliable parts onto themselves. More-
over, only symmetric points over the reliable parts are generat-
ed, denoted as a set of symmetry elector groups Py = {Pi,li =
1,2,---,&), € = ISDfI. Each group is a set of symmetric point
pairs denoted as symmetry electors P, = {(s;), slfj)lj =1,2,--},
which corresponds to the initial symmetric point pair (s;, 57) €
5 (as shown in Fig. [ (b)).
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4.2. The voting scheme for more linear constraints

To make our method more robust to non-isometric deforma-
tions, we propose a voting scheme to construct more constraints
on parts far away from the shape extremities, such as the torso.
First, we initialize candidate point pairs from the local maxi-
ma of Wave Kernel Signature outside the reliable parts. Sec-
ond, for each candidate point pair (v;, v;), we select the nearest
symmetry elector group Pﬁ,, which is measured by the aver-
age geodesic distance between (v, v,) and the initial symmet-
ric point pair (s;, s7). Then each elector (s;;, slf,.) € P{, casts
a vote on (vy, vy) if the degree of asymmetry of (v, v,) is less
than a prescribed threshold §;, which is 0.07 times the maxi-
mum geodesic distance in our implementation. The asymmetry
of point pair (v, v,) evaluated by the elector (s;;, 5 j) is defined
as follows:

asym((vs, v,), (si_/'a S:'j)) =

max(ldg(vsa sij) - dg(vt’ S,/-j)|, |dg(vs’ S;j), dg(vty si_i)|)~ (10)

After the voting procedure, we prune the candidate point pairs

whose votes are less than a half of the number of their corre-,q
sponding symmetry elector group, and filter bad point pairs ac-,,
cording to the local geometric similarity of WKS, whichis 0.15.

Finally, we obtain more symmetry point pairs Pg (Fig. (c)).401
More regional constraints are obtained from Pg through choos-402
ing a small geodesic disk per point, and converted to linear con-

straints CA, = B,. Combining CA; = B; with CA; = B,, the+s
final transformation C, is solved using Egq. @ We convert C,44
to the dense intrinsic symmetry 7" using a limited search space, s
instead of the whole space of delta functions centered at points4e
of M employed in [13]. In practice, we search the symmet-47
ric points of parts within the symmetric parts, and search their+s
symmetric points of torso within the torso itself, which results4e
in accurate symmetry map and reduces the computational cost#°

simultaneously. an
412
413

5. Experimental results »

In this section, we evaluate our method on two datasets of*'®
the intrinsic symmetry benchmark [9]. The TOSCA dataset*'®
[38]] has 80 shapes with approximate intrinsic symmetries in 9*"
classes. The SCAPE dataset [39] contains 71 shapes in 1 class.*®
Similar to [12], we improve the quality of the benchmark, and*®
increase the number of it to 200 uniformly distributed points for**
each shape class in TOSCA, denoted as an augmented bench-**'
mark U = {u;|i = 1,2,---,200}. U is computed via the global**
extrinsic reflection symmetry of the undeformed shape in each*
class. The shape class “gorilla” is excluded because there is*
no undeformed version of it. For each point u; € U, we de-
note the geodesic distance between T'(x;) and u;, which is the+s
ground-truth correspondence of u;, as the geodesic error. Thess

two evaluation metrics in [9] are employed: io7

e Correspondence rate: The percentage of points in U for*®
which the geodesic error is less than a distance threshold®
e. 430

431

e Mesh rate: The percentage of shapes for which the corre-4:

spondence rate is above a threshold . 43

7

Corr Rate (%) Mesh Rate

TOSCA | LS IR |Our | LS IR Our
Cat |61.8 |77.6 |86.1 | 2/11 | 6/11 | 10/11

Centaur |74.0 [82.1 |94.6 | 3/6 3/6 6/6

David |65.9 [69.2 [87.8 | 3/7 | 3/7 | /7

Dog 82.0 |186.6 |91.7 | 7/9 7/9 8/9

Horse |88.2 [928 [95.1 | 7/8 | 7)8 | 78
Michael |71.2 |73.1 |90.7 |12/20 |13/20 | 17/20
Victoria |74.3 |80.6 |954 | 5/11 | §/11 | 11/11

Wolf |98.8 |99.8 | 100 | 3/3 3/3 3/3
Average |74.2 |80.0 |91.7 |42/75 |50/75 | 69/75

Table 1: Average Correspondence Rate and Mesh Rate of the results solved

via LS, IR [13] and our optimization@ The evaluations are conducted on U
for all classes of TOSCA, except for "gorilla”. The transformations solved by
LS are the initializations of IR and the rates are listed in the left column. The
rates of IR and our optimization method are listed in the middle and the right
columns.

area(M)

In our experiments, & = 0

same as [9]].

, B = 75%, which are the

5.1. Comparison of our optimization with the iterative refine-
ment method

In order to evaluate the effectivity of our optimization with
orthogonality constraints, we compare the functional maps gen-
erated by Eg. [§ with the ones obtained by the linear system (L-
S) and the iterative refinement method (IR) [[13]]. Ovsjanikov et
al. [13]] estimate an initial functional map from LS construct-
ed via Eq. [3|and ] and refine it using IR. To be fair, we use the
same constraints in Eq. [3|and[] The conversion procedure from
functional maps to point-to-point mappings over the augmented
benchmark U is the same, too. We solve Eg. E] with A =1 to
factor out the affection of it and run IR for 20 iterations as men-
tioned in [[13]]. As the statistics in Tab.illustrate, our optimiza-
tion with orthogonality constraints gives much better functional
maps than IR, since we search the best transformation satisfy-
ing all of the constraints directly. It works well even when the
shapes undergo some non-isometric deformations (see the last
two rows of Fig.[7). Although IR improves the initial estima-
tion from LS in general, it may break good correspondences in
some degree during removing the bad ones, as shown in the top
row of Fig.[/] We also find that LS may not provide a good
initial estimation for the shapes with moderate non-isometric
deformations. Without the good initial estimation, IR fails to
perform well, as illustrated in the last two rows of Fig.

5.2. Comparison of our method with and without the voting
scheme

In practice, many natural objects or man-made models are
not perfectly symmetric and often undergo some degree of non-
isometric deformations. Thus inadequate regional constraints,
such as initial regional constraints, with the two types of feature
preservation constraints (HKS, WKS) are not enough to gen-
erate robust self-isometry using the function map framework
(Tab. [2). As the last two rows of Fig. [§] show, more regional
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Figure 7: Global intrinsic symmetries of LS, IR [13] and our method on U are
listed from left to right. Green lines link point pairs with small geodesic errors
while red lines link pairs with larger geodesic errors. The average distortions
of meshes from the top row to the bottom row are 0.0000, 0.0090 and 0.0121.

constraints detected by the voting process contribute to gen-
erate reasonable results when the centaurs undergo some non-
isometric deformations.

5.3. Comparison with the state-of-the-art methods

To evaluate the quality of our symmetry detection algorithm,
we compare the results on TOSCA and SCAPE datasets with
the state-of-the-art methods, Mobius transformations (MT) [9]]
and Blended Intrinsic Maps (BIM) [30], in Tab. [3] and Tab. 4]
respectively. Some visual comparisons with them are illustrat-
ed in Fig. 0] The comparisons are based on the manually se-
lected ground-truth set from MT instead of the aforementioned
augmented benchmark 2. The average correspondence rates
and mesh rates of our method are 95.1% and 76/79 on TOSCA
(Tab. B), and 91.7% and 69/71 on SCAPE (Tab. @), which are
significant improvements over MT. Compared to BIM, we im-
prove the statistics on SCAPE dataset because BIM may map
the front of a human to the back (the middle column in Fig.[9).
The quality of SCAPE meshes is not as good as the one of

Corr Rate (%) Mesh Rate
TOSCA | Without | With | Without | With
Cat 76.2 86.5 6/11 10/11
Centaur 80.5 94.6 5/6 6/6
David 84.1 88.1 5/7 7/7
Dog 84.8 91.8 7/9 8/9
Horse 82.8 95.0 6/8 7/8
Michael 77.0 90.7 10/20 | 17/20
Victoria 84.3 95.5 9/11 11/11
Wolf 97.5 100 3/3 3/3
Average 81.3 91.8 51/75 69/75

Table 2: Average Correspondence Rate and Mesh Rate of our method without
the voting scheme and our full method. The evaluations are conducted on U for
all shape classes of TOSCA, except for "gorilla”. The rates of our full method
are listed after the method without the voting scheme.

Corr Rate(%) Mesh Rate
TOSCA |MT |BIM |[Our | MT |BIM | Our
Cat 66 | 93.7 1909 | 6/11 |10/11|10/11
Centaur | 92 | 100 |96.0| 6/6 | 6/6 | 6/6
David | 82 | 974 |94.8| 4/7 | 7/7 | 7/7
Dog 91 | 100 |932| 89 | 9/9 | 8/9
Horse | 92 | 97.1 (952 8/8 | 8/8 | 7/8
Michael | 87 | 98.9 | 94.6 | 15/20|20/20 | 20/20
Victoria | 83 | 98.3 |98.7| 7/11 |11/11|11/11
Wolf | 100 | 100 | 100 | 3/3 | 3/3 | 3/3
gorilla - 1989 (989 | - 4/4 | 4/4
Average: | 85 |98.02|95.1|57/75|78/79 | 76/79

Table 3: Comparison of MT [9]], BIM and our method on TOSCA. The
statistics are based on the manually selected ground-truth set used in [9].

Corr Rate(%) Mesh Rate
SCAPE |MT [BIM |Our | MT |BIM | Our
Average: | 82 | 84.8 | 91.7 | 51/71 | 54/71 | 69/71

Table 4: Comparison of MT [9]], BIM [30] and our method on SCAPE. The
statistics are based on the manually selected ground-truth set used in [9].
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Figure 8: Comparison of our method without the voting scheme (the left col-470
umn) and our full method (the right column) on Y. The average distortions ofs7
the ground-truth correspondences of the shapes from the top row to the bottom,,

row are 0.0000, 0.0076 and 0.0140, respectively. Green lines link point pairs
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with small geodesic errors while red lines for the other.
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TOSCA meshes and this may explain the decrease in perfor-+®
mance for our algorithm and BIM on SCAPE. The performance*”
of BIM drops more for the mid-edge uniformization technique*®
employed. BIM provides better statistics on TOSCA than our*®
algorithm, but it suffers from the running time issue. Our Mat-

lab implementation takes 67.1 minutes to compute the global,,
symmetries for all TOSCA meshes, while the BIM’s C++ im-

plementation takes 365.5 minutes. More results of our methodss
on TOSCA and SCAPE datasets are presented on U in Fig.[12]«
Our algorithm generalizes well to other classes of shapes withass
extremities in addition to humans and animals. We depict somesss
results on models from the SHREC 2007 Watertight Bench-sss

9

Figure 9: Comparison of the MT [9] (the left column), BIM (the middle
column) and our method (the right column). Points indicate they are mapped
to themselves. Green lines and points correspond to point pairs with small
geodesic errors while red lines and points for the other.

Figure 10: Global intrinsic symmetries of other shapes with extremities.

mark [40] in Fig. [T0}

5.4. Limitations

While our method handles shapes with moderate non-
isometric distortion, it still has some limitations. The first lim-
itation is that our method could not detect the intrinsic symme-
tries of models without extremities, or without symmetric point
pairs in the symmetry-invariant point set. As shown in Fig. [TT]
(a), our method fails because the symmetry-invariant point set
of the vase only contains stationary points (the black points),
and provides no initial symmetric point pairs. Moreover, if the
reliable parts for the subsequent voting scheme are insufficient,
we may get unsatisfactory results (Fig. [I](b) and (c)). Hence
we will find a more general scheme to construct sufficient initial
constraints. The second limitation is that we handle only reflec-
tional symmetry in this paper. We plan to extend our method to
explore more general cases of symmetries in the future.

6. Conclusion

In this paper, we introduce a novel intrinsic symmetry detec-
tion method. Instead of propagating the sparse correspondence
to the entire shape using geodesic distance, the compact func-
tional map framework is leveraged. We design an initialization
procedure to extract sparse and reliable symmetric point pairs
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Figure 11: The failures of our algorithm. (a) The symmetry-invariant point set538
of the vase only contains stationary points (the black points). (b) and (c) The re-33°
liable regions (the green regions) of initial symmetric pairs (the black lines) are54°
insufficient for the subsequent voting scheme, which results in unsatisfactory3+!

results (red arrow). 542
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544
from the extremities of the model, and a voting procedure to**
extract more symmetric point pairs distributed over the entire::
shape. The symmetric point pairs are then employed to con-sss
struct a set of regional constraints. Finally, we formulate thess
problem as an optimization with descriptor, regional and or->*°
thogonality constraints simultaneously. The functional repre-::;
sentation, efficient optimization method and effective regionalsss
constraints together make our method a faster, automatic andss
robust implementation. Experimental results on the symme-zzz
try detection benchmark exhibit the improved accuracy of our,,
method for a large variety of object types with moderate devia-sss

tions from perfect symmetry. 559
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