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Abstract

Intrinsic symmetry detection, phrased as finding intrinsic self-isometries, courts much attention in recent years. However, extracting
dense global symmetry from the shape undergoing moderate non-isometric deformations is still a challenge to the state-of-the-art
methods. To tackle this problem, we develop an automatic and robust global intrinsic symmetry detector based on functional
maps. The main challenges of applying functional maps lie in how to amend the previous numerical solution scheme and construct
reliable and enough constraints. We address the first challenge by formulating the symmetry detection problem as an objective
function with descriptor, regional and orthogonality constraints and solving it directly. Compared with refining the functional map
by a post-processing, our approach does not break existing constraints and generates more confident results without sacrificing
efficiency. To conquer the second challenge, we extract a sparse and stable symmetry-invariant point set from shape extremities
and establish symmetry electors based on the transformation, which is constrained by the symmetric point pairs from the set. These
electors further cast votes on candidate point pairs to extract more symmetric point pairs. The final functional map is generated
with regional constraints constructed from the above point pairs. Experimental results on TOSCA and SCAPE Benchmarks show
that our method is superior to the state-of-the-art methods.
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1. Introduction1

Symmetry is an universal phenomenon in nature which pro-2

vides global information about the structure of objects. Numer-3

ous geometry processing tasks, such as shape matching [1], seg-4

mentation [2], geometry completion [3] and meshing [4], bene-5

fit from symmetry information. Hence a great deal of work [5]6

devotes to extract symmetries from geometric data, e.g., point7

clouds data and polygon meshes.8

Most of the previous work concentrates on extrinsic sym-9

metries [6, 7]. Recently, intrinsic symmetry detection, phrased10

as finding intrinsic self-isometries, has received more atten-11

tion, since intrinsic symmetric objects or phenomenons are12

more common in real world, such as a human in different pos-13

es. However, it is infeasible to search the space of non-rigid14

transformations directly in classical point-to-point representa-15

tion. So many methods limit the search space to a set of fea-16

ture points, and adopt combinatorial algorithms to prune point17

pairs without preserving local geometric similarity and distance18

structure [8], which are computationally expensive and sensi-19

tive to geodesic noises. Kim et al. [9] take advantage of the20

fact that intrinsic self-isometries are contained in a low dimen-21

sional Möbius transformation space [10] to select the best self-22
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Figure 1: The results of our method for nearly self-isometric shapes (centaur,
michael, victoria and gorilla).

isometry. The symmetry-invariant set, used to generate candi-23

date Möbius transformations, consists of some local extrema24

of the Average Geodesic Distance function (AGD) [11]. The25

set may be not perfectly symmetric and leads to failure re-26

sults. Ovsjanikov et al. [12] extract intrinsic symmetries us-27

ing functional maps [13]. But they need at least one reference28

shape with a known symmetry to estimate the quotient space29

and a consistent decomposition to obtain the final dense intrin-30

sic symmetries. The decomposition divides the shape into fun-31

damental domains, e.g., the right part and the left part of the32

shape in the case of reflectional symmetry. Furthermore, shapes33

undergoing considerable degree of non-isometric deformations,34

such as humanoid models with connections between torso and35
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Figure 2: The pipeline of our method.

other parts, also challenge the existing methods.36

We observe that most existing methods detect intrinsic sym-37

metry over a sparse set of feature points, then propagate the38

sparse correspondence to the entire shape using geodesic dis-39

tance. The performance is degenerated since the propagation40

only considers metric. The functional map framework presents41

a compact representation of correspondences between shapes,42

and provides an efficient way to convert functional maps in-43

to dense point-to-point correspondences [13]. This motivates44

us to present an automatic and robust method for global in-45

trinsic symmetry detection leveraging the functional map rep-46

resentation (Fig. 1). Intrinsic symmetries are non-trivial self-47

isometries represented by orthonormal functional map matrix-48

es. Extending the functional map to detect global intrinsic sym-49

metry directly suffers from the absence of constraints indicat-50

ing the underlying non-trivial self-isometry. Existing descrip-51

tors, such as Heat Kernel Signature (HKS) [14] and Wave Ker-52

nel Signature (WKS) [15], provide no valuable cues for distin-53

guishing identity transformation with other symmetry transfor-54

mations, since they remain invariant in these transformations.55

Point or segment correspondences contain useful information56

for distinguishing the above transformations, however the es-57

tablishment of reliable and enough symmetric point or segment58

pairs itself is a challenge problem. The key idea of our method59

is to construct reliable and sufficient regional constraints from60

symmetric point pairs. The most prominent and stable feature61

pairs tend to lie on the extremities of the model. We design an62

initialization procedure to extract sparse and reliable symmet-63

ric point pairs from the extremities, and a voting procedure to64

extract more symmetric point pairs.65

In the initialization procedure, initial symmetric point pairs66

are chosen from a symmetry-invariant set (Fig. 2 (a)), which67

is extracted from shape extremities and whose stability and68

sparseness make the procedure reliable and efficient. Then69

we compute an initial functional map satisfying regional con-70

straints, constructed from the initial point pairs. We specify71

the parts containing the initial symmetric pairs as the reliable72

parts of the initial functional map. More symmetric point pairs73

over the reliable parts are selected as symmetry electors (Fig. 274

(b)). In the following procedure, a voting scheme is proposed75

to extract more symmetric point pairs outside the reliable parts76

(Fig. 2 (c)). The final functional map is generated with the re-77

gional constraints constructed from all of the point pairs, and78

converted to a point-to-point mapping (Fig. 2 (d)).79

When solving for the functional maps, we formulate the80

problem as an optimization problem with descriptor, regional81

and orthogonality constraints simultaneously. Compared with82

refining the functional map by a post-processing [12, 13, 16],83

our method does not break other constraints and generates more84

confident results without sacrificing efficiency. The functional85

representation, efficient optimization method and effective re-86

gional constraints together make our method a faster, automatic87

and robust implementation for global intrinsic symmetry detec-88

tion. We demonstrate the effectiveness of our optimization with89

orthogonality constraints and the voting scheme experimental-90

ly (Section 5.1 and Section 5.2). The pipeline of our method is91

given in Fig. 2. The main contributions are as follows:92

1. We present a robust intrinsic symmetry detection method93

based on functional maps. By formulating the problem as94

an objective function with descriptor, regional and orthog-95

onality constraints and solving it directly, more faithful re-96

sults are generated without compromising efficiency.97

2. A reliable symmetry-invariant point set is generated by98

moving a very sparse set of samples towards the extremi-99

ties of shapes, making the establishment of the initial sym-100

metric point pairs feasible.101
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3. A voting scheme is proposed to establish more symmetric102

point pairs, which provides constraints outside the reliable103

parts.104

2. Related work105

The vast majority of existing work has been on extrinsic sym-106

metry detection [6, 7, 17, 18, 19]. Recently, intrinsic symmetry107

detection has attracted more attention [8, 9, 12, 20, 21, 22]. As108

intrinsic symmetry is a special case of correspondences, most109

methods work for shape correspondences as well as intrinsic110

symmetries. Some previous work aims to establish point pairs111

from feature points [8, 20, 23, 24, 25, 26, 27, 28], which has112

unknown complexity associated with the number of the fea-113

ture points. For example, Au et al. [28] prune bad correspon-114

dences over skeletal feature nodes. Zhang et al. [27] perform115

the pruning procedure over prominent shape extremities, which116

are local extrema of AGD. The local extrema of AGD are un-117

stable under deformations and some local extrema may be not118

symmetry-invariant points and do not have symmetric points119

(the bottom row of Fig. 3). Moreover, the number and the lo-120

cation of the local extrema are related to a smoothing parame-121

ter, with which AGD is smoothed. Hence, in the pruning step,122

we establish initial symmetric pairs over a sparse and stable123

symmetry-invariant set (the top row of Fig. 3), which is extract-124

ed from shape extremities. Similar to [28], our pruning-based125

initialization step is followed by a voting procedure. In the vot-126

ing step, Au et al. [28] establish electors and candidates over the127

same set of feature points, and output a sparse correspondence.128

However, we construct electors and candidates in different part-129

s of shapes. Because more electors and candidates are needed130

to provide enough regional constraints and solve for a dense131

intrinsic symmetry via functional maps.132

Alternative approaches [8, 20, 21] aim to embed a shape into133

a new space in which intrinsic symmetry detection is reduced134

to an extrinsic one. For example, Raviv et al. [8] embed the ob-135

ject into an Euclidean space by generalized multi-dimensional136

scaling. The original geodesic distances are preserved in the137

form of corresponding Euclidean distances. They minimize dis-138

tance distortion directly in the new space. Ovsjanikov et al. [21]139

define a signature space by the eigenfunctions of the Laplace-140

Beltrami operator, in which each point is represented as a se-141

quence of signs of the restricted Global Point Signature [29].142

Some recent work has attempted to represent intrinsic sym-143

metries as global transformations with a small number of pa-144

rameters, which is similar to extrinsic symmetry detection [9].145

Lipman et al. [10] observe that isometry is a subset of Möbius146

transformations which has only 6 degrees of freedom for genus147

zero surfaces, and develop a Möbius Voting scheme to find148

correspondences of shapes. Kim et al. [9] extend it to detect149

global intrinsic symmetry since intrinsic symmetries are self-150

isometries of shapes. Kim et al. [30] blend a large set of can-151

didate conformal maps to form a smooth map, which results152

in a large blending matrix and is computationally expensive.153

Liu et al. [31] detect intrinsic reflective symmetry axis curves154

based on blended intrinsic maps [30]. All of the above meth-155

ods based on conformal geometry assume the input shapes are156

Figure 3: The symmetry-invariant point sets V (top) and the local extrema of
AGD (bottom) on various mesh models. Some local extrema of AGD may be
not stationary points and do not have symmetric points (marked by red circle).

genus zero surfaces. The quality of the meshes affects their per-157

formance, since they use a mid-edge uniformization technique158

to map genus zero surfaces onto the extended complex plane.159

Using the novel functional representation [13], Ovsjanikov160

et al. [12] detect intrinsic symmetry via an appropriate quotient161

space of the functional space. However, establishing the quo-162

tient space requires at least one reference shape with a known163

symmetry and the conversion to dense intrinsic symmetries is164

not straightforward.165

3. Optimization of global intrinsic symmetry166

We adopt functional maps introduced by Ovsjanikov et167

al. [13] to detect global intrinsic symmetries. Before introduc-168

ing our objective function in Section 3.2, a brief overview of169

functional maps is given in Section 3.1.170

3.1. Functional maps171

Given two compact smooth Riemannian manifolds M, N172

and a bijective mapping between them T : M → N , a linear173

transformation between two function spaces is induced TF :174

F (M,R) → F (N ,R), TF( f ) = f ◦ T−1, f ∈ F (M,R), where175

F (M,R), F (N ,R) denote the spaces of real functions on M176

and N respectively.177

Given two groups of basis functions, {φMi } of F (M,R) and178

{φNj } of F (N ,R), the transformation TF can be fully encoded179
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by a real matrix C defined by180

TF(φMi ) =
∑

j

c jiφ
N
j . (1)

Conversely, the mapping T can be recovered once the matrix C181

is obtained, according to Remark 4.1 in [13]. In this paper, we182

use the eigenfunctions of the Laplace-Beltrami operator on the183

mesh as the basis functions. The cotangent weight scheme [32]184

without area normalization is employed for the discretization of185

the Laplace-Beltrami operator, which is less sensitive to volume186

distortion and results in more compact functional maps. For any187

real function f onM represented as f =
∑
i

ãiφ
M
i and g = TF( f )188

on N represented as g =
∑
i

b̃ jφ
N
j , we have the equation:189

g =
∑

j

b̃ jφ
N
j = TF( f ) =

∑
i

ãiTF(φMi )

=
∑

i

ãi

∑
j

c jiφ
N
j =
∑

j

∑
i

ãic jiφ
N
j , (2)

which can be rewritten as b = Ca if a = (ãi) and b = (b̃ j)190

denote the vectors of coefficients of f and g, respectively. In191

this way, many constraints of the mapping T become linear in192

the functional representation, such as descriptor preservation,193

point or segment correspondences and operator commutativity,194

and cast enough constraints bi = Cai on the unknown matrix C.195

According to Theorem 5.1 in [13], when the underlying map196

T is isometric, T commutes with the Laplace-Beltrami operator197

and the corresponding functional matrix C must be orthonor-198

mal. Hence the orthogonality and operator commutativity pro-199

vide additional constraints in this case.200

3.2. Optimization with orthogonality constraints201

It is well known that global intrinsic symmetry is a self-202

isometric transformation of a shape. It induces an orthonormal203

functional matrix C commutating with the Laplace-Beltrami204

operator. As mentioned in Section 3.1, the matrix C can be205

recovered by casting the following three types of constraints:206

CA = B, (3)
CR = RC, (4)
CT C = I, (5)

where A = (ai), B = (bi), and R is the functional matrix induced207

by the Laplace-Beltrami operator.208

In order to find the best transformation in the functional rep-209

resentation satisfying the constraints in Eq. 3, 4 and 5, Ovs-210

janikov et al. [12, 13] and Pokrass et al. [16] estimate an ini-211

tial functional map by solving a linear system constructed via212

Eq. 3 and 4, in the least squares sense. A post-processing is em-213

ployed to refine the initial functional map by orthogonalizing it214

iteratively, in which point-to-point mappings over samples must215

be established iteratively. The post-processing may also break216

some existing constraints when refining the initial transforma-217

tion. Thus, a good initial functional map is important and the218

computational cost relies on the number of the samples.219

In this paper, we employ the optimization method with or-220

thogonality constraints [33] to compute a functional map sat-221

isfying all of the constraints directly. The algorithm has lower222

flops and generates no worse solution than the state-of-the-art223

methods. Our problem is formulated as follows:224

minC‖CA − B‖2F + λ‖CR − RC‖2F s.t. CT C = I, (6)

where I is the identity matrix. We choose the Frobenius norm225

to ensure the differentiability of the objective function and a226

non-negative parameter λ to control the influence of operator227

commutativity. A small λ is used when a shape undergoes some228

degree of non-isometric deformations. We use λ = 0.1 for our229

experiments.230

4. Algorithm231

Given a nearly self-isometric triangular mesh M, our algo-232

rithm takes three stages to establish the underlying dense intrin-233

sic symmetry T :M→M. First, we extract a sparse and stable234

symmetry-invariant point setV (see the first row of Fig. 3) and235

establish reliable initial symmetric point pairs PS
1 from it. The236

initial regional constraints are constructed from PS
1 . Combin-237

ing the initial regional constraints with two types of descriptor238

preservation constraints, denoted as CA1 = B1, an initial trans-239

formation C1 is computed via Eq. 6. Symmetric point pairs over240

reliable parts of C1 are established and deemed to be symmetry241

elector groups PV . Then, the electors from PV cast votes on242

candidate point pairs outside the reliable parts to establish more243

symmetric point pairsPS
2 . The final transformation C2 is solved244

using Eq. 6 with the constraints CA1 = B1 and CA2 = B2 con-245

structed from PS
2 . Finally, C2 is converted to T via a variant of246

the method described in [13]. The pseudocode of our approach247

is given in Algorithm 1.248

Algorithm 1: Properly-constrained Orthonormal Function-
al Maps for Intrinsic Symmetries

Input: A nearly self-isometric shapeM
Output: A point-to-point self-mapping T

1: /*The selection of symmetry electors*/

1.1: V ← ExtractSet(M, AGD);
1.2: PS

1 ← EstablishPairs(V,HKS ,WKS , AGD);
1.3: CA1 = B1 ← BuildConstraints(HKS ,WKS ,
PS

1 );
1.4: C1 ← OptimizeMap(A1, B1,R);
1.5: PV ← SelectElectors(C1, P

S
1 ).

2: /*The voting scheme for more symmetric point pairs*/

2.1: PS
2 ← ElectorsVoting(PV ,WKS );

2.2: CA2 = B2 ← BuildConstraints(PS
2 );

2.3: C2 ← OptimizeMap(A1, B1, A2, B2,R).
3: /*The conversion to the dense self-isometry*/

3.1: T ← ConvertMap(C2).
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Figure 4: The symmetry-invariant point setV (the right column) extracted from
nine samples (the left column) is shown from two viewpoints (the top row and
the bottom row). In each iteration, every sample (the black point) is moved
to the maxima (the red point) of AGD within a local region (the cyan region)
around it.

4.1. The selection of symmetry electors249

4.1.1. The symmetry-invariant point set250

A point set V on a self-isometric shape is a symmetry-251

invariant set [9] if ∀ v ∈ V, T (v) ∈ V for all symmetries T . v252

is a stationary point if T (v) = v; (v, v′) is a symmetric point pair253

if T (v) = v′. Motivated by the observation that the extremities254

of the self isometric shape are stable and compose a symmetry-255

invariant set, we devise a sampling algorithm to extract the ex-256

tremities based on AGD, of which a larger value indicates the257

point is closer to the extremities.258

Starting from the maxima of AGD, we perform the farthest259

point sampling algorithm and obtain nine samples. These sam-260

ples compose a sampling set V (the left column of Fig. 4), the261

number of which should be larger than the number of the ex-262

tremities. The set V is not necessary to be on the extremities263

and symmetry-invariant. For each vi ∈ V, we move it towards264

to the extremities iteratively. In each iteration, vi is moved to265

the maxima of AGD within a local region around it (the second266

and third columns of Fig. 4), the radius of which is 0.2 times the267

maximum geodesic distance. The movement is stopped until vi268

is stable or there is a sample v j ∈ V with the AGD value not269

smaller than the one of vi. In the latter case, vi is pruned from270

V.271

4.1.2. The initial symmetric point pairs272

We introduce two distortion measures of a mapping over the273

symmetry-invariant set V. Given a mapping T : V → V, we274

measure its deviation from isometry by the maximum distortion275

diso(T ) [34] and average distortion Diso(T ) [35] defined as:276

diso(T ) = max(vi ,v j)∈Tmax(vs ,vt)∈T ′ d̃iso(vi, v j; vs, vt), (7)

277

Diso(T ) =
1
|T |

∑
(vi ,v j)∈T

1
|T ′|

∑
(vs ,vt)∈T ′

d̃iso(vi, v j; vs, vt), (8)

where T ′ = T − (vi, v j), d̃iso(vi, v j; vs, vt) is the non-isometric278

distortion between point pairs (vi, v j) and (vs, vt) defined as:279

d̃iso(vi, v j; vs, vt) = |dg(vi, vs) − dg(v j, vt)|, (9)

where dg(·, ·) is the geodesic metric and is normalized by the280

maximum geodesic distance over the mesh. A mapping T is an281

ambiguous correspondence if the maximum distortion diso(T )282

and average distortion Diso(T ) are zeros (or approximate to ze-283

ros), such as the identity mapping T1 in Fig. 5 and the flipped284

mappings Ti, i = 2, 3, 4, in Fig. 5. Once the ambiguous map-285

pings are identified, the symmetry orbit of a point can be ex-286

tracted directly. An efficient search algorithm is proposed to287

find the ambiguous mappings over the symmetry-invariant set288

V, whose stability and sparsity ensure the reliability and feasi-289

bility of our search algorithm.290

The search algorithm is summarized in the following step-291

s. First, we generate all of the mappings {T } among V as the292

search space. Second, according to the local geometric simi-293

larity and global distance structure, we prune bad mappings to294

obtain the ambiguous mappings and the initial symmetric point295

pairs PS
1 (Fig. 2 (a)).296

A mapping in the search space could be identified as a bad297

mapping from some perspectives. In our experiment, a mapping298

is bad if its differences of local descriptors AGD, HKS and WK-299

S are all larger than the corresponding thresholds εAGD, εHKS300

and εWKS . We do not prune a mapping only relying on one type301

of descriptors. We also classify a mapping as a bad mapping if302

its diso(T ) or Diso(T ) are larger than prescribed thresholds εdiso303

and εDiso .304

The above thresholds are determined automatically. Taking305

the computation of εDiso as an example (the top row in Fig. 6),306

we compute Diso(T ) for all mappings {T } in the search space307

and sort the values in ascending order. In this way, we get a308

parameter curve of Diso(T ) and compute its gradient curve. We309

select the value of Diso(T ) corresponding to the first maximum310

value of the gradient curve (the red point in Fig. 6 (b)) as εDiso .311

The effectivity of the strategy is attributed to the fact that the312

distortions of the ambiguous mappings are zeros (or approxi-313

mate to zeros), which results in a jump between the ambiguous314

mappings (the black points in Fig. 6 (a)) and the rest mappings.315

We use the smoothing method in [36] to approximate the promi-316

nent structure of the curves. The thresholds εAGD, εHKS , εWKS317

and εdiso are determined in the same way.318

4.1.3. The initial transformation319

For each (si, s′i) ∈ P
S
1 , we pick out the geodesic disks cen-320

tering at si and s′i , respectively. The average values of Shape321
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Figure 5: The mappings Γ = {Ti |Ti : V → V, i = 1, 2, 3, 4} could not be distinguished by geometric similarity and distance structure.

Figure 6: Take the horse in Fig. 5 as an example. (a) The smoothed parameter curves of Diso(T ) (top) and differences of AGD (bottom) about mappings; (b) The
smoothed gradient curves of the smoothed parameter curves. The black points in (a) are the average distortion and differences of AGD of the ambiguous mappings
in Fig. 5. The red points in (b) are the first maximum values of the gradient curves.

Diameter Function (SDF) [37] over the geodesic disks are con-322

trolled to be less than εS DF , where SDF is normalized by its323

maximum value. The threshold value εS DF is computed auto-324

matically as follows: we segment the model into four clusters325

according to SDF via k-means. The cluster with the largest SDF326

value is deemed to be the ”body” of the model. We choose the327

minimal SDF value within this cluster as εS DF . The geodesic328

disks are divided evenly to obtain geodesic strip pairs as the329

initial regional constraints. Finally, we project the indicator330

functions of the geodesic strip pairs onto the orthonormal ba-331

sis {φMi (x)}ni=1 to obtain linear constraints. Combining the linear332

constraints with HKS, WKS preservation constraints, we obtain333

the initial linear constraints CA1 = B1. The initial transforma-334

tion C1 is solved through Eq. 6 using A = A1, B = B1. The335

geodesic disks are deemed to be the reliable parts of C1.336

Ovsjanikov et al. [13] convert the functional map to a point-337

to-point mapping through searching the image of the delta func-338

tion centered at each point in all of the delta functions cen-339

tered at points of M. Different with [13], we limit the search340

space of points in the reliable parts onto themselves. More-341

over, only symmetric points over the reliable parts are generat-342

ed, denoted as a set of symmetry elector groups PV = {Pi
V |i =343

1, 2, · · · , ξ}, ξ = |PS
1 |. Each group is a set of symmetric point344

pairs denoted as symmetry electorsPi
V = {(si j, s′i j)| j = 1, 2, · · ·},345

which corresponds to the initial symmetric point pair (si, s′i) ∈346

PS
1 (as shown in Fig. 2 (b)).347
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4.2. The voting scheme for more linear constraints348

To make our method more robust to non-isometric deforma-349

tions, we propose a voting scheme to construct more constraints350

on parts far away from the shape extremities, such as the torso.351

First, we initialize candidate point pairs from the local maxi-352

ma of Wave Kernel Signature outside the reliable parts. Sec-353

ond, for each candidate point pair (vs, vt), we select the nearest354

symmetry elector group Pi
V , which is measured by the aver-355

age geodesic distance between (vs, vt) and the initial symmet-356

ric point pair (si, s′i). Then each elector (si j, s′i j) ∈ P
i
V casts357

a vote on (vs, vt) if the degree of asymmetry of (vs, vt) is less358

than a prescribed threshold δ1, which is 0.07 times the maxi-359

mum geodesic distance in our implementation. The asymmetry360

of point pair (vs, vt) evaluated by the elector (si j, s′i j) is defined361

as follows:362

asym((vs, vt), (si j, s′i j)) =

max(|dg(vs, si j) − dg(vt, s′i j)|, |dg(vs, s′i j), dg(vt, si j)|). (10)

After the voting procedure, we prune the candidate point pairs363

whose votes are less than a half of the number of their corre-364

sponding symmetry elector group, and filter bad point pairs ac-365

cording to the local geometric similarity of WKS, which is 0.15.366

Finally, we obtain more symmetry point pairs PS
2 (Fig. 2 (c)).367

More regional constraints are obtained from PS
2 through choos-368

ing a small geodesic disk per point, and converted to linear con-369

straints CA2 = B2. Combining CA1 = B1 with CA2 = B2, the370

final transformation C2 is solved using Eq. 6. We convert C2371

to the dense intrinsic symmetry T using a limited search space,372

instead of the whole space of delta functions centered at points373

of M employed in [13]. In practice, we search the symmet-374

ric points of parts within the symmetric parts, and search their375

symmetric points of torso within the torso itself, which results376

in accurate symmetry map and reduces the computational cost377

simultaneously.378

5. Experimental results379

In this section, we evaluate our method on two datasets of380

the intrinsic symmetry benchmark [9]. The TOSCA dataset381

[38] has 80 shapes with approximate intrinsic symmetries in 9382

classes. The SCAPE dataset [39] contains 71 shapes in 1 class.383

Similar to [12], we improve the quality of the benchmark, and384

increase the number of it to 200 uniformly distributed points for385

each shape class in TOSCA, denoted as an augmented bench-386

mark U = {ui|i = 1, 2, · · · , 200}. U is computed via the global387

extrinsic reflection symmetry of the undeformed shape in each388

class. The shape class ”gorilla” is excluded because there is389

no undeformed version of it. For each point ui ∈ U, we de-390

note the geodesic distance between T (ui) and u′i , which is the391

ground-truth correspondence of ui, as the geodesic error. The392

two evaluation metrics in [9] are employed:393

• Correspondence rate: The percentage of points inU for394

which the geodesic error is less than a distance threshold395

ε.396

• Mesh rate: The percentage of shapes for which the corre-397

spondence rate is above a threshold β.398

Corr Rate (%) Mesh Rate
TOSCA LS IR Our LS IR Our

Cat 61.8 77.6 86.1 2/11 6/11 10/11
Centaur 74.0 82.1 94.6 3/6 3/6 6/6
David 65.9 69.2 87.8 3/7 3/7 7/7
Dog 82.0 86.6 91.7 7/9 7/9 8/9

Horse 88.2 92.8 95.1 7/8 7/8 7/8
Michael 71.2 73.1 90.7 12/20 13/20 17/20
Victoria 74.3 80.6 95.4 5/11 8/11 11/11

Wolf 98.8 99.8 100 3/3 3/3 3/3
Average 74.2 80.0 91.7 42/75 50/75 69/75

Table 1: Average Correspondence Rate and Mesh Rate of the results solved
via LS, IR [13] and our optimization 6. The evaluations are conducted on U
for all classes of TOSCA, except for ”gorilla”. The transformations solved by
LS are the initializations of IR and the rates are listed in the left column. The
rates of IR and our optimization method are listed in the middle and the right
columns.

In our experiments, ε =

√
area(M)

20π , β = 75%, which are the399

same as [9].400

5.1. Comparison of our optimization with the iterative refine-401

ment method402

In order to evaluate the effectivity of our optimization with403

orthogonality constraints, we compare the functional maps gen-404

erated by Eq. 6 with the ones obtained by the linear system (L-405

S) and the iterative refinement method (IR) [13]. Ovsjanikov et406

al. [13] estimate an initial functional map from LS construct-407

ed via Eq. 3 and 4, and refine it using IR. To be fair, we use the408

same constraints in Eq. 3 and 4. The conversion procedure from409

functional maps to point-to-point mappings over the augmented410

benchmark U is the same, too. We solve Eq. 6 with λ = 1 to411

factor out the affection of it and run IR for 20 iterations as men-412

tioned in [13]. As the statistics in Tab. 1 illustrate, our optimiza-413

tion with orthogonality constraints gives much better functional414

maps than IR, since we search the best transformation satisfy-415

ing all of the constraints directly. It works well even when the416

shapes undergo some non-isometric deformations (see the last417

two rows of Fig. 7). Although IR improves the initial estima-418

tion from LS in general, it may break good correspondences in419

some degree during removing the bad ones, as shown in the top420

row of Fig. 7. We also find that LS may not provide a good421

initial estimation for the shapes with moderate non-isometric422

deformations. Without the good initial estimation, IR fails to423

perform well, as illustrated in the last two rows of Fig. 7.424

5.2. Comparison of our method with and without the voting425

scheme426

In practice, many natural objects or man-made models are427

not perfectly symmetric and often undergo some degree of non-428

isometric deformations. Thus inadequate regional constraints,429

such as initial regional constraints, with the two types of feature430

preservation constraints (HKS, WKS) are not enough to gen-431

erate robust self-isometry using the function map framework432

(Tab. 2). As the last two rows of Fig. 8 show, more regional433
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Figure 7: Global intrinsic symmetries of LS, IR [13] and our method onU are
listed from left to right. Green lines link point pairs with small geodesic errors
while red lines link pairs with larger geodesic errors. The average distortions
of meshes from the top row to the bottom row are 0.0000, 0.0090 and 0.0121.

constraints detected by the voting process contribute to gen-434

erate reasonable results when the centaurs undergo some non-435

isometric deformations.436

5.3. Comparison with the state-of-the-art methods437

To evaluate the quality of our symmetry detection algorithm,438

we compare the results on TOSCA and SCAPE datasets with439

the state-of-the-art methods, Möbius transformations (MT) [9]440

and Blended Intrinsic Maps (BIM) [30], in Tab. 3 and Tab. 4,441

respectively. Some visual comparisons with them are illustrat-442

ed in Fig. 9. The comparisons are based on the manually se-443

lected ground-truth set from MT instead of the aforementioned444

augmented benchmark U. The average correspondence rates445

and mesh rates of our method are 95.1% and 76/79 on TOSCA446

(Tab. 3), and 91.7% and 69/71 on SCAPE (Tab. 4), which are447

significant improvements over MT. Compared to BIM, we im-448

prove the statistics on SCAPE dataset because BIM may map449

the front of a human to the back (the middle column in Fig. 9).450

The quality of SCAPE meshes is not as good as the one of451

Corr Rate (%) Mesh Rate
TOSCA Without With Without With

Cat 76.2 86.5 6/11 10/11
Centaur 80.5 94.6 5/6 6/6
David 84.1 88.1 5/7 7/7
Dog 84.8 91.8 7/9 8/9

Horse 82.8 95.0 6/8 7/8
Michael 77.0 90.7 10/20 17/20
Victoria 84.3 95.5 9/11 11/11

Wolf 97.5 100 3/3 3/3
Average 81.3 91.8 51/75 69/75

Table 2: Average Correspondence Rate and Mesh Rate of our method without
the voting scheme and our full method. The evaluations are conducted onU for
all shape classes of TOSCA, except for ”gorilla”. The rates of our full method
are listed after the method without the voting scheme.

Corr Rate(%) Mesh Rate
TOSCA MT BIM Our MT BIM Our

Cat 66 93.7 90.9 6/11 10/11 10/11
Centaur 92 100 96.0 6/6 6/6 6/6
David 82 97.4 94.8 4/7 7/7 7/7
Dog 91 100 93.2 8/9 9/9 8/9

Horse 92 97.1 95.2 8/8 8/8 7/8
Michael 87 98.9 94.6 15/20 20/20 20/20
Victoria 83 98.3 98.7 7/11 11/11 11/11

Wolf 100 100 100 3/3 3/3 3/3
gorilla – 98.9 98.9 – 4/4 4/4

Average: 85 98.02 95.1 57/75 78/79 76/79

Table 3: Comparison of MT [9], BIM [30] and our method on TOSCA. The
statistics are based on the manually selected ground-truth set used in [9].

Corr Rate(%) Mesh Rate
SCAPE MT BIM Our MT BIM Our
Average: 82 84.8 91.7 51/71 54/71 69/71

Table 4: Comparison of MT [9], BIM [30] and our method on SCAPE. The
statistics are based on the manually selected ground-truth set used in [9].
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Figure 8: Comparison of our method without the voting scheme (the left col-
umn) and our full method (the right column) onU. The average distortions of
the ground-truth correspondences of the shapes from the top row to the bottom
row are 0.0000, 0.0076 and 0.0140, respectively. Green lines link point pairs
with small geodesic errors while red lines for the other.

TOSCA meshes and this may explain the decrease in perfor-452

mance for our algorithm and BIM on SCAPE. The performance453

of BIM drops more for the mid-edge uniformization technique454

employed. BIM provides better statistics on TOSCA than our455

algorithm, but it suffers from the running time issue. Our Mat-456

lab implementation takes 67.1 minutes to compute the global457

symmetries for all TOSCA meshes, while the BIM’s C++ im-458

plementation takes 365.5 minutes. More results of our method459

on TOSCA and SCAPE datasets are presented onU in Fig. 12.460

Our algorithm generalizes well to other classes of shapes with461

extremities in addition to humans and animals. We depict some462

results on models from the SHREC 2007 Watertight Bench-463

Figure 9: Comparison of the MT [9] (the left column), BIM [30] (the middle
column) and our method (the right column). Points indicate they are mapped
to themselves. Green lines and points correspond to point pairs with small
geodesic errors while red lines and points for the other.

Figure 10: Global intrinsic symmetries of other shapes with extremities.

mark [40] in Fig. 10.464

5.4. Limitations465

While our method handles shapes with moderate non-466

isometric distortion, it still has some limitations. The first lim-467

itation is that our method could not detect the intrinsic symme-468

tries of models without extremities, or without symmetric point469

pairs in the symmetry-invariant point set. As shown in Fig. 11470

(a), our method fails because the symmetry-invariant point set471

of the vase only contains stationary points (the black points),472

and provides no initial symmetric point pairs. Moreover, if the473

reliable parts for the subsequent voting scheme are insufficient,474

we may get unsatisfactory results (Fig. 11 (b) and (c)). Hence475

we will find a more general scheme to construct sufficient initial476

constraints. The second limitation is that we handle only reflec-477

tional symmetry in this paper. We plan to extend our method to478

explore more general cases of symmetries in the future.479

6. Conclusion480

In this paper, we introduce a novel intrinsic symmetry detec-481

tion method. Instead of propagating the sparse correspondence482

to the entire shape using geodesic distance, the compact func-483

tional map framework is leveraged. We design an initialization484

procedure to extract sparse and reliable symmetric point pairs485

9



Figure 11: The failures of our algorithm. (a) The symmetry-invariant point set
of the vase only contains stationary points (the black points). (b) and (c) The re-
liable regions (the green regions) of initial symmetric pairs (the black lines) are
insufficient for the subsequent voting scheme, which results in unsatisfactory
results (red arrow).

from the extremities of the model, and a voting procedure to486

extract more symmetric point pairs distributed over the entire487

shape. The symmetric point pairs are then employed to con-488

struct a set of regional constraints. Finally, we formulate the489

problem as an optimization with descriptor, regional and or-490

thogonality constraints simultaneously. The functional repre-491

sentation, efficient optimization method and effective regional492

constraints together make our method a faster, automatic and493

robust implementation. Experimental results on the symme-494

try detection benchmark exhibit the improved accuracy of our495

method for a large variety of object types with moderate devia-496

tions from perfect symmetry.497
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