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In this supplementary material, we describe more details and offer
more results for our algorithms.

1 LENGTH OF CONGRUENT SEGMENTS
To compute point-level congruency score Sc (Section 4.1), we sim-
plify shape P and obtain P̂ to avoid progressively growing two equal-
length segments on many points on P . We then classify points on
P̂ into seven classes for computing the length of two congruent
segments noted as L(Cp̂l ) and L(C

p̂
r ) (Figure 1 (Bottom)). Points in

the first four classes most likely have congruent segments while
the points in the other three classes usually do not. For these three
classes, we still use curve similarities to assign a (more likely) low
congruency score.
(a) If two adjacent feature points p̂l1 and p̂r1 of p̂ are convex points,

then L(C
p̂
l ) = L(C

p̂
r ) =min(d(p̂, p̂l1),d(p̂, p̂r1));
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(b) For concave feature point p̂l1 and convex feature point p̂r1,
(1) ifd(p̂, p̂l1) ≈ d(p̂, p̂r1) and ∠p̂l2p̂l1p̂ ≈ ∠p̂r2p̂r1p̂, thenL(C

p̂
l ) =

L(C
p̂
r ) =min(d(p̂, p̂l2),d(p̂, p̂r2)).

(2) ifd(p̂, p̂l1) ≈ d(p̂, p̂r1) and ∠p̂l2p̂l1p̂ ≫ ∠p̂r2p̂r1p̂, thenL(C
p̂
l ) =

L(C
p̂
r ) =min(d(p̂, p̂l1),d(p̂, p̂r1)).

(3) if d(p̂, p̂l1) ≫ d(p̂, p̂r1), then L(C
p̂
l ) = L(C

p̂
r ) = d(p̂, p̂r1).

(4) ifd(p̂, p̂l1) ≈ d(p̂, p̂r1) and ∠p̂l2p̂l1p̂ ≪ ∠p̂r2p̂r1p̂, thenL(C
p̂
l ) =

L(C
p̂
r ) =min(d(p̂, p̂l2),d(p̂, p̂r2)).

(5) ifd(p̂, p̂l1) ≪ d(p̂, p̂r1), then L(C
p̂
l ) = L(C

p̂
r ) =min(d(p̂, p̂l2),

d(p̂, p̂r1)).
(c) If two adjacent points p̂l1 and p̂r1 of p̂ are concave points, then

L(C
p̂
l ) = L(C

p̂
r ) =min(d(p̂, p̂l2),d(p̂, p̂r2));

(d) For convex feature point p̂l1 and concave feature point p̂r1, there
are also five sub-cases, which are similar to those in (b)((d1) →
(b1), (d2) → (b4), (d3) → (b5), (d4) → (b2), and (d5) → (b3)).

Here, thresholds for length and angle approximation are Lc
20 and π

6 .

2 CONJUGATE TRUNKS ADJUSTMENT
As discussed in Section 4.3, trunks T and T ′ attaining the high-
est CRS score for shapes P and Q are not necessarily conjugate.
Therefore, they need to be adjusted to obtain conjugate (TP ,TQ ).
Figure 2 shows the adjustments for two shape pairs. To do so, TP
and TQ (polygons in solid lines) attain average edge lengths of T
and T ′ (polygons in dashed lines). With n edges for TP , a global
optimization method aims to make each angle of TP close to its
corresponding angle in T and minimize the total angle difference.
Here we adopt a local method asT is very close toTP . We randomly
make n − 3 consecutive angles of TP to be the same as those in T .
Fixing n− 3 angles and the edge lengths, the remaining three angles
can be precisely calculated since there is no degree of freedom. As
the edges and angles of TP are slightly modified, the vertices of TP
are not necessarily on P (contours in dashed lines). To remove this
artifact, we scale and translate exterior pieces of P into TP and ob-
tain a slightly different shape P̃ (contours in solid lines). The process
for TQ and Q is also the same. Note that T and T ′ are usually very
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Fig. 1. (Top) We compute {C p̂
l , C

p̂
r } (red solid segments) for p̂ (black point) on simplified shape P̂ (solid line) and their mapping on P (dashed line) is {Cp

l , C
p
r }

(red dashed segments). The curve similarity of {Cp
l , C

p
r } is our congruency score (number). (Bottom) Seven classes of points on P̂ for computing {C p̂

l , C
p̂
r }.

close to TP and TQ and therefore the deformation of shapes P and
Q resulting from this process is minor.

Fig. 2. Conjugate trunks adjustment for bird and hat (a), flower and camel
(b). Input contours P and Q , and their best candidate trunk pair T and T ′

are in dashed lines; Conjugate trunks TP and TQ after adjustments and
slightly deformed contours are in solid lines.

3 THE EFFICIENT COMPUTATION OF THE AREA
REVERSIBILITY SCORE

In Section 4.2, we define the cross-reversibility score (CRS) for any
trunk pair (T ,T ′). The area reversibility term of the score (Equation
5) requires efficiently computing the area of gaps and overlaps
among shape pieces inside trunks, and the area of regions outside
trunks. Here, we only discuss the computation of these areas for T
as the process for T ′ is similar.

Given an edge correspondence betweenT andT ′, we adjust them
to be exactly conjugate (refer to the previous section ’Conjugate
Trunks Adjustment’). Trunk T with n vertices divides the boundary
of shape P inton curves, which are denoted as {C1,C2, ...,Cn }. Then,
n curves are rotated and translated into T ′ according to the edge
correspondences. The transformed curves are supposed to fit in T ′

with minor gaps, overlaps and regions outsideT ′. Here, we also use
{C1,C2, ...,Cn } for the pieces enclosed by these transformed curves.
We convert these pieces into binary masks and compute those areas
by Boolean operation.
Polygons can be easily converted to a binary region-of-interest

mask, whose pixel value attains one for polygons inside and zero oth-
erwise.We covert {C1,C2, ...,Cn } andT ′ intomasks {MC1 ,MC2 , ...,MCn }

and MT ′ , respectively. The masks for gaps, overlaps and regions
outside T ′ are generated by Boolean operation as follow:

Munion = MC1

⋃
MC2

⋃
...
⋃

MCn ,

Mout = Munion
⋂

(∼ MT ′),

Mдap = (∼ Munion )
⋂

MT ′ ,

MunionInside = Munion
⋂

MT ′ ,

The areas of objects in the binary image Mout and Mдap are
the areas of regions outside T ′ and gaps, respectively. The area of
overlaps is defined as

∑i=n
i=1 area(MCi

⋂
MT ′)−area(MunionInside ).

In practice, we enlarge {C1,C2, ...,Cn } and T ′ by the same scale to
ensure the resolution of masks, as shape P has a unit area. Area
errors are reduced by the same scale later. All masks are ensured to
be in the same size.

4 GAP ELIMINATION
When conjugate trunks are created and curves {C1, . . . ,Cn } are
obtained by transferring curves along the boundary of P into TQ ,
some gaps and overlaps may exist. In Section 4.3, we discussed how
to remove overlaps. Here, gap elimination is described in details. We
use Laplacian editing method that deforms two curves into opposite
directions to reduce their gaps. However, the handle anchor ai is
outsideCj and aj is outsideCi (see Figure 8e in manuscript). In each
iteration, we use the farthest handle anchor pair among all curves
instead of two curves. If the deformation causes new overlaps, we
bisect the step size until no overlaps will be generated. We iterate
until the distance between two farthest handle anchors is less than
0.01. We set points of Ci , which are close (less than 0.01 distance)
to other curves, as static anchors when deforming Ci . We further
remove minor gaps by automatic curve merging. We define the
distances between a point p and a curveC , and between two curves
C1 and C2 as the following:

d(p,C) = min
c ∈C

d(p, c),d(C1,C2) = min
c1∈C1

d(c1,C2).

A junction is a meeting point of at least three dissection curves. We
compute candidate junctions on each curve Ci to divide the curve
into segments for merging (blue points in Figure 8f in manuscript).

ACM Transactions on Graphics, Vol. 37, No. 6, Article 190. Publication date: November 2018.
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Fig. 3. Triangular mesh and mesh texture of input shape (left) and output
shape (right).

For any two curves Cj and Cl , the point on Ci , which minimizes
d(p,Cj ) + d(p,Cl ) and makes the distance smaller than 0.05, is a
candidate junction ofCi and denoted aspijl . Two candidate junctions
pijl and pij′l ′ with distance smaller than 0.05 are merged to form
pijl j′l ′ . We merge a segment from one curve to the closest segment
from other curves. Since two closest segments are very similar, we
use the one with smaller index as the merged segment. Eventually,
tiny gaps are removed and segments are smoothed slightly.

Curve self-intersection is prohibitive in both overlap elimination
and gap elimination. But, minor folded curve segments may still
occur, which will be removed in the final curve smoothing. The
boundary deformation always terminates without any overlaps
since no more overlaps are introduced during gap elimination. In
most cases, gaps were reduced below the distance threshold for
automatic curve merging and then completely eliminated. In a few
cases, the Laplacian editing method terminated with gaps larger
than the threshold and we had to manually divide the gap. The
failure comes from the lack of sampling points on curves. We will
introduce adaptive sampling into our algorithm. Note that in all
results which are claimed to be generated automatically, the gaps
are completely eliminated automatically.

5 AUTOMATIC TEXTURE TRANSFER
When the input shapes already have textures, it is desired to transfer
the available texture to their deformed RIOT pair. To do so, we
triangulate input shape P and obtain texture coordinates for vertices
(Figure 3 (Left)). Then, we replace the boundary vertices with those
from deformed shape P̃ and smooth interior vertices via Laplacian
to obtain deformed mesh and its associated texture (Figure 3 (Right)).
Having the texture of the deformed mesh, we can take the texture
of each piece by triangulating pieces and sampling the texture.

6 COMPARISONS WITH MANUAL DESIGNS
Here, we provide some additional comparisons with manual results
created by Prof. Jin Akiyama. As apparent in Figure 4, our method
automatically produces almost the same RIOT solutions (right) in
comparison with manual design (left).

7 STATISTICS AND TIMING FOR THE GALLERY
For a more concrete picture of statistics and timing, we have pro-
vided Table 1 for the 12 reversible shape pairs in the gallery (see
Figure 13 in the manuscript). The average time to compute reversibil-
ity scores (RS) and a quick cross-reversibility score (QCRS) for each
pair are 0.15 seconds and 2.8 seconds, respectively. The average time
for candidate trunks (CT) and the (slow) cross-reversibility score
(CRS) for each pair of shapes are respectively 20.4 and 13.0 seconds.
The average time for the boundary deformation (BD) which turns

Fig. 4. Additional comparisons betweenmanual designs (left) and our results
(right) on the same input.

out to be the most time consuming step is 127.3 seconds for two
shapes. The number of sample points along a shape boundary (N)
and sparse sample points for diverse polygons (M) are 202 and 35
in average. In the table, we use the larger N and M of two shapes
in a pair. These statistics and timings are similar to those of the
large shape collection in the manuscript. More complex boundaries
have higher run-time for RS since they have more necks need to be
computed while the simpler shapes like the face of Charlie Chaplin
has the lowest RS run-time. For QCRS, CT and CRS, a larger set of
convex points after simplification will lead to larger polygon spaces
and higher run-time (e.g., the squirrel). The yellow fish and hare
(paired with tortoise) are the opposite cases. Lower run-time for
CRS in the flower and camel pair is due to the small number of
candidate trunks. Lower cross-reversibility score means that more
boundary deformations needed (e.g., the Monkey King and the ba-
nana); example for the opposite case is the ambulance and the bell.
Longer boundaries with more features lead to more contour points
(N) and larger point space (M) for candidate vertices due to adaptive
sampling (Monkey King); the ambulance and the bell is the opposite
case.

8 ADDITIONAL FABRICATED MODELS
We have fabricated some of the pairs presented in the paper. Figure 5
illustrates maple leaf to beaver and Figure 6 shows a RIOT between
butterfly and fish.

9 USER STUDY
We conducted a user study to assess human capabilities to decide
whether an approximate RIOT exists for a shape pair. In this study,
participants learn five RIOT examples provided by Jin Akiyama
(three simple ones from Figure 4 and two more complex ones from
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Table 1. Timing and statistics on the gallery results.

RS(s) QCRS(s) CT(s) CRS(s) BD(s) N M

0.11 2.7 25.1 10.3 67.6 166 28

0.15 0.8 15.7 17.8 103.6 186 35

0.09 1.4 18.6 14.2 72.0 168 26

0.17 6.6 14.9 2.6 99.5 225 43

0.14 1.1 16.1 22.7 126.5 208 33

0.20 3.9 20.7 10.3 114.5 218 37

0.14 1.6 17.0 7.6 126.7 172 33

0.16 1.8 20.7 2.9 101.1 222 35

0.18 2.4 25.8 9.2 228.7 236 47

0.15 8.5 35.6 41.3 209.6 216 38

0.15 1.6 20.9 9.2 175.2 222 36

0.13 0.8 13.5 8.2 102.8 186 32

Avg 0.15 2.8 20.4 13.0 127.3 202 35
Max 0.20 8.5 35.6 41.3 228.7 236 47
Min 0.09 0.8 13.5 2.6 67.6 166 26

Fig. 5. Fabricated model of the RIOT between maple leaf and beaver.

Figure 14 in the manuscript) and one approximate RIOT example
from the overview (Figure 3 in the manuscript). Then, they are asked
the yes or no question: ’Does an approximate RIOT exist for each
of the shape pairs?’. Among 16 pairs presented, the answer to eight
of them was positive. These eight images were selected from the

Fig. 6. Fabricated model of the RIOT between butterfly and fish.

gallery (Figure 13 in the manuscript) and had cross-reversibility
score (CRS) larger than 0.7. The other eight (negative ones) attained
CRS lower than 0.3. All the shape pairs and visual examples can be
found at this link.

10 TOP 100 SHAPE PAIRS BASED ON QCRS
As discussed in Section 6, we use the quick cross-reversibility score
(QCRS) to identify potential reversible shape pairs as inputs for RIOT
construction. While the slower cross-reversibility score (CRS) in
RIOT construction will provide a more accurate reversibility assess-
ment, to evaluate QCRS against CRS, we show reversible transforms
computed fully automatically by our algorithm in Figure 7 to Fig-
ure 11 for the top 100 shape pairs following the ranking of their
QCRS. Note that their ranking numbers are marked in the top left
corner and their QCRS and CRS are placed side by side in their sub-
figure. As shown in the figures, the CRS is typically large when the
QCRS of a shape pair is large and our algorithm typically produces
a reasonable solution for such a shape pair.

11 ADDITIONAL RESULTS
Here, we provide more results illustrating how our method can
successfully generate RIOT pairs for complicated shapes. All RIOT
results in figure 12 and figure 13 are generated fully automatically
except the ’rooster and crown’ pair and the ’crown and bird’ pair,
which need minor user interactions for the foot of the cock and the
head of the bird. The RIOT results in the first three rows of figure 12
are from the large shape collection. Those in the other three rows
and in figure 13 are from shapes that have been collected from the
internet.
In order to remove the effect of manually designed textures on

the overall look and quality of the final results, we also provide all
results without textures in figure 14 and figure 15. These results
include the teaser result in figure 1 and gallery results in figure 14
in the paper, and additional results in figure 12 and figure 13 in this
supplementary.
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Fig. 7. Reversible transforms (bottom in each sub-figure) computed fully automatically by our algorithm for the first to the 20th shape pairs (top in each
sub-figure) with respect to the ranking of their QCRS. Note that their rankings are shown in the top left corner and their QCRS and CRS are placed side by
side in their sub-figure.
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Fig. 8. Reversible transforms (bottom in each sub-figure) computed fully automatically by our algorithm for the 21st to the 40th shape pairs with respect to
the ranking of their QCRS.
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Fig. 9. Reversible transforms (bottom in each sub-figure) computed fully automatically by our algorithm for the 41st to the 60th shape pairs with respect to
the ranking of their QCRS.
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Fig. 10. Reversible transforms (bottom in each sub-figure) computed fully automatically by our algorithm for the 61st to the 80th shape pairs with respect to
the ranking of their QCRS.
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Fig. 11. Reversible transforms (bottom in each sub-figure) computed fully automatically by our algorithm for the 81st to the 100th shape pairs with respect to
the ranking of their QCRS.
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Fig. 12. Additional reversible shape transforms computed fully automatically by our algorithm (except the ’rooster and crown’ pair and the ’crown and bird’
pair). For each pair, we show the input shapes in silhouette images and the resulting (possibly deformed) shapes which induce a RIOT in texture. Hinged
dissections are shown in a circular sequence.
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Fig. 13. Additional reversible shape transforms computed fully automatically by our algorithm.
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Fig. 14. Reversible shape transforms without manually designed textures (bottom in each sub-figure), which correspond to those with textures in figure 1, 14
in the paper and figure 12 in this supplementary. For each pair, we also show the input shapes in the top in each sub-figure.
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Fig. 15. Reversible shape transforms without manually designed textures (bottom in each sub-figure), which correspond to those with textures in figure 12 and
figure 13 in this supplementary. For each pair, we also show the input shapes in the top in each sub-figure.
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